
USING XML TECHNOLOGIES TO FIT TO THE OAIS MODEL :
A CASE STUDY

* Thierry Levoir
 Tél : 05.61.27.42.50 Fax : 05.61.27.30.84
Thierry.Levoir@cnes.fr

* Marco Freschi,
 Tél : 05.61.27.40.83 Fax : 05.61.27.30.84
Marco.Freschi@cnes.fr

* CNES Centre National d’Etudes Spatiales
 18 Avenue Edouard Belin,
 31401 Toulouse Cedex 4

Abstract

The OAIS (Open Archival Information System) Reference Model offers a real help to
design an archive. It includes many services such as data ingest, data management,
administration, access systems etc…

In such system we need features like platform independence, human readable format of
data, extensibility, maintainability, … XML and all the related "new" technologies seem
to provide a way to do that.

However, it is sometimes very difficult to understand where everything really fits. Many
different architectures may be defined.

The article takes cue on the needed to update an existing data center. It presents the role
of each single object inside of a data center and what are (or are not) the benefits using
XML technologies.

Introduction

The OAIS (Open Archival Information System) Reference Model provides a framework
to create an archive (consisting of an organization of people and systems, that has
accepted the responsibility to preserve information and make it available for a
Designated Community). It offers also a real help to design: ingest, data management,
administration and data access systems.

XML stands for eXtensible Markup Language. XML starts as a way to mark up content,
but it soon became clear that XML also provided a way to describe structured and semi-
structured data thus making the usage as a data storage and interchange format. Many
related languages, formats, technologies like SOAP, XML Query, XML-RPC, WSDL,
Schema, … are still coming to provide solutions to almost all problems!

With such technologies, we can define many different architectures. Due to the vastness
of the problem, it is quite difficult to describe all the possible solutions, so we intend to
describe a possible architecture of a system where, the organization of data and their
usage, is defined in accordance with the OAIS reference model.

This study takes cue on the needed to update an existing data center, providing some
features like platform independence, human readable format of data and easy
extensibility for new type of data. All these advantages seem to be supplied by XML
and Java. XML and Java together can certainly be used to create some very interesting
applications from application servers to better searchable web sites. However, it is
sometimes very difficult to understand where everything really fits. We attempt to
clarify the role of each single object inside of a data center, providing as result, the
complete description of a system including its architecture.

OAIS Functional Entities

4-
1.

2

MANAGEMENT

Ingest

Data
Management

SIP

AIP
DIP

queries
result sets

Access

P
R
O
D
U
C
E
R

C
O
N
S
U
M
E
R

Descriptive
Info

AIP

orders

Descriptive
Info

Archival
Storage

Administration

Preservation Planning

Ingest: Services and functions to accept Submission Information Packages (SIPs) from
Producers and prepare the contents for storage and management within the archive

Archival Storage: Services and functions for the storage, maintenance and retrieval of
Archival Information Packages

Data Management: Services and functions for populating, maintaining, and accessing
both descriptive information which identifies and documents archive holdings and
internal archive administrative data.

Preservation Planning : This entity monitors the environment of the OAIS and provides
recommendations to ensure that the information stored in the OAIS remain accessible to
the Designated User Community over the long term

Administration: Manages the overall operation of the archive system

Access: Supports consumers in determining the existence, description, location and
availability of information stored in the OAIS and allowing consumers to request and
receive information products

Implementation Requirements

For each component described in the previous picture we study a possible solution using
new technologies. The complexity of the system shows us a wide range of possible

approaches according to the different point of views. However it is clear that the
following requirements has to be met:

• Programming Productivity: a direct adoption of new technologies is
insufficient unless they are properly used to their potential and appropriately
integrated with other relevant technologies. So the choice of the tools must be
analyzed also in the application general context.

• Reliability and Availability: the system is often used for archiving and retrieval
critical data and a good reliability in every condition and a good handling of the
transactions can guarantee a success of the system itself.

• Security: one of the major goal in the data preservation is to make secure the
data exchange between user and archiving system, in particular the use of
internet and the web technologies make this goal a prime concern.

• Scalability: in the development of system is always considered a factor of
growth to meet new demands and new concepts. For this reason the system has
to consider future extension both in its operation and in its user utilization.

• Integration: the development has to consider, when it exists, existing data even
if it is old and outdated. Often it is not an easy target but, the ability to combine
old and new technologies, can help to save time and resources in the migration
phases.

 On the base of these requirements we intend to develop a system that offers both
producer and consumer the opportunity to work through internet. The idea is to create
services, that will be integrated together to obtain an efficient system. The concept of
creating services that can be accessed over the Web gave rise to a new term called web
service. In other words our system offers the user some components accessible via
standard web protocol.

Remote Customers and SOAP

Our system presents two interfaces with the external world. The former is used by the
producers and it represents the way to insert new data in the system (ingest); the latter,
instead, is used by consumers that extract data from the system for their purposes
(access). Both producers and consumers can be remote clients, so it is necessary to find
a suitable protocol to exchange structured and typed information on the web and at the
same time lightweight and simple. Moreover, the protocol is based on XML and this
fact gives us the first input on the power of this new technology. SOAP is a way to
describe a messaging format for machine-to-machine communication. It consists of
three main parts:

• SOAP Envelope that collect all the info about the recipient and the message
itself.

• SOAP Header that defines header information

• SOAP body that contains call and response information

We decided to use a standard HTTP internet protocol even if SOAP binds other formats.
The major goal in the design of SOAP is to allow an easy creation of interoperable
distributed web services, providing easy access to objects. One of the most evident
advantages in the service description with SOAP is due to the use of XML; in fact the

experience shows, it is much easier to describe services in XML rather than CORBA or
RMI. For example, a simple request of data associated with the mission Interball and
experiment Hyperboloid can be described by the following simplified SOAP XML
document:

<soap:Envelope>
 <soap:Body>
 <GetData>
 <Operation>Retrieval</Operation>
 <Mission>Interball</Mission>
 <Experiment>Hyperboloid</Experiment>
 </GetData>
 </soap:Body>
</soap:Envelope>

The <Envelope> element is the root element of a SOAP message and it defines the
XML document as a SOAP message. The <Body> element is mandatory and it contains
the real SOAP message: in our case <GetData>, <Operation> <Mission> and
<Experiment> elements are “application specific” and they are not a part of SOAP
standard. The <Body> element may contain a <Fault> element. The <Fault> element is
used to provide information about errors that occurs while processing the message. By
nature this element can only appear in answers (response messages). Anyway SOAP
was not the only candidate for our approach but a study comparison with the other
solutions shown an effective list of advantages. A prime candidate for the content of the
requests was XML. However, generating and parsing the XML, both on the client and
on the server, can be tedious and error prone. An alternative was to use remote method
invocation (RMI). But RMI has its own drawbacks, it forces all callers to be Java
compliant, and it compromises scalability by requiring a "live" remote object. We were
looking for something easy to use, flexible and scalable and most of the keys addressed
SOAP as solution. Another key advantage of SOAP is that it does not require a
permanent connection between computers. SOAP can ride with other HTTP traffic,
such as Web pages, and SOAP does not require the network administrator to perform
any additional setup or maintenance. To resume the analysis we can conclude that
SOAP is a simple protocol that supports the exchange of objects but doesn't support
remote invocation of objects. The big advantage of SOAP is its openness: Because it is
built on XML and designed to use standard transports like HTTP and SMTP, any OS
that supports those standards is available as a platform for SOAP development and
deployment.

Data Management and XML Database

The Data Management represents another critical block of the OAIS model. A good
choice of support and data representation makes a system more efficient both in term of
performance and cost. Nowadays the market offers a great number of products
especially in the area of relational and object models, so an easy choice should have
been to adapt our data to an existing model. One thing was clear the data traveled in
XML format both in input and output and a conversion had to be done to map the XML
documents to whatever other model. We found the bibliography treating this problem
not really well made and often specialized for particular applications. Again XML
offers alternatives but it was important to know if that solution could be considered
applicable. The starting point was to study the typology of exchanging data, and try to
classify our working data, basically the exchanging data can be grouped in two
categories:

• Data-Centric Documents they use XML as a data transport. They are designed
for machine consumption. It is not important for the application or the DB that
the data is stored in an XML documents.

• Document-Centric Documents they are documents that are designed for
human consumption. They are characterized by less regular or irregular structure
and large grained data.

In our case the data are often documents, images and normally this kind of data are not
highly structured, so also in this case XML seems to be useful. The native XML
databases offer several advantages. First of all when the data is semi-structured (it
means it has a regular structure, but the structure is variable) a use of relational model
implies either a large number of columns with null values or a large number of tables,
which make the system inefficient and costful in term of space. A second advantage in
the use of XML database resides on the retrieval speed. Using XML database and an
accurate policy of storing, the XML database shows to be faster than relational and
object databases. The reason for this is that some strategies used by native XML
databases store entire documents together physically or use physical (rather than
logical) pointers between the parts of the document. This fact allows the user to perform
the retrieval without slower logic joins. This fact has, however, an obvious drawback:
the increased speed applies only when retrieving data in the order it is stored on disk.
This can cause problems if the user needs a different view of data the performances can
decrease and to be worse than in a relational or object database. In our system the views
are well defined so the real queries produced both the producer and the consumer are
predictable. Before continuing in the possible advantages it will better to see the generic
features offered by a native XML Database and how to work with.

A native XML database...

• Defines a (logical) model for an XML document (as opposed to
the data in that document) and stores and retrieves documents
according to that model. At a minimum, the model must include
elements, attributes, PCDATA, and document order.

• Has an XML document as its fundamental unit of (logical)
storage, just as a relational database has a row in a table as its
fundamental unit of (logical) storage.

• Is not required to have any particular underlying physical storage
model. For example, it can be built on a relational, hierarchical,
or object-oriented database, or use a proprietary storage format
such as indexed, compressed files.

An important element to know when we work with native XML database is the way to
storage data

XML Storage

Native XML Databases store XML documents as a unit and will create a model that is
closely aligned with XML or one of XML's related technologies like DOM. This model
includes arbitrary levels of nesting and complexity, as well as complete support for
mixed content and semi-structured data. This model is automatically mapped by the
Native XML Database into the underlying storage mechanism. The mapping used will
insure that the XML specific model of the data is maintained. Once the data is stored we
has to continue to use the XML Database tools if you expect to see a useful
representation of the data. For instance, deciding to use an XML Database that sits on

top of a relational database, accessing the data tables directly using SQL would not be
as useful as you might expect. The reason for this is simply that the data you will see is
the model of the XML document (i.e. elements and attributes) rather then the business
entities that the data represents. The business entity model exists within the XML
document's domain, not within the domain of the underlying data storage system. To
work with the data, you work with it as XML.

Collections

An Important concept provided by XML Databases is the collection. The collection
represents a group of XML documents that for this nature can be assimilable. Xml
Databases manage collections of documents, allowing you to query and manipulate
those documents as a set. This is very similar to the relational concept of a table. There
is a slightly but important difference between the collection and the table concept, that
is not all native XML databases require a schema to be associated with a collection.
This means that you can store any XML document in the collection, regardless of
schema.

Queries

XPath is the current native XML Database query language of choice. In order to
function as a database query language, XPath is extended slightly to allow queries
across collections of documents. Unfortunately, XPath wasn't really designed as a
database query language and comes up short in several ways when it's used as one.

Some of the more glaring XPath limitations include a lack of grouping, sorting, cross
document joins, and support for data types. Because of these issues XPath needs to be
expanded as part of a more comprehensive language. Many of the issues can be
resolved by utilizing XSLT to fill in the holes, but a more database-oriented language is
under development, in the form of XQuery. Several vendors have already begun to
release prototype XQuery implementations for use with their databases.

To improve the performance of queries, XML Databases support the creation of indices
on the data stored in collections. These indices can be used to improve the speed of
query execution dramatically. The details of what can be indexed and how the indices
are created will vary widely between products, but most support the feature in some
form.

Conclusion

We have focused on the ingest, access and data-management services because, it's for
that we can see easily the benefits of XML. However when a project has to begin, we
have to understand that the use of XML is not always the good choice. We have to
avoid to use it, only to use a fashion language !

SUMMARY SESSION 4

