
CCSDS DEDSL
A WAY TO DESCRIBE METADATA

Arnaud LUCAS (Arnaud.Lucas@cnes.fr)

Denis MINGUILLON (Denis.Minguillon@cnes.fr)

INTRODUCTION
The DEDSL provides an extensible way of defining data entity dictionaries.

A Data Entity is a concept that can, or does, take on one or more values. Semantics of a
data entity, such as a text definition of its meaning, are defined by attributes. The purpose
of the DEDSL Recommendation is to define a language for specifying a dictionary which
describes semantics for a collection of data entities—it does not define a specific
dictionary.

A dictionary is understood as a mechanism that is able to organise a set of information in
a consistent and easily understandable manner, and it is commonly used by humans to
look up the meaning of words used in natural languages. Similarly, a Data Entity
Dictionary (DED) is used by humans and systems to look up the definition, and other
attributes, of data entities used in the definition and generation of data products.

The DEDSL defines the abstract definition of the semantic information that is required to
be conveyed and presents the specification in a layered manner (attributes, entities,
dictionaries). This is done so that the actual technique used to convey the information is
independent of the information content and, therefore, the same abstract standard can be
used within different formatting environments. This also permits the semantic
information to be translated to different representations as may be needed when data are
transferred across different domains.

The DEDSL Recommendation defines the concepts of name, definition, units, and a small
set of other standard attributes so that they may be used consistently in the formation of
data entity dictionaries. Given the wide variety of data entities that may need to be
described, only a few of the attributes are made mandatory by this Recommendation.

The method used to define standard attributes can also be used to extend the set of
attributes beyond the standard ones provided within the Recommendation.

Several classes of data entities are defined. These classes allow making a distinction
between the abstract data entities—the models—and the concrete data entities—the data
fields in a data product.

This Recommendation is strongly based on the International Organization for
Standardization (ISO)/International Electrotechnical Commission (IEC) Specification and
standardisation of data elements (Information Technology—Specification and
standardisation of data elements—part 3: Basic attributes of data elements. ISO/IEC
11179-3:1994. Geneva: ISO, 1994) with which it is widely consistent for all semantic
aspects.

OVERVIEW

GENERAL

As discussed in the introduction, a Data Entity Dictionary is used by humans and systems
to look up the definition and other attributes of data entities. This section discusses some
of the primary uses of data entity dictionaries and presents a basic example of DEDSL
usage.

USES OF DATA ENTITY DICTIONARIES

PRODUCT DATA ENTITY DICTIONARIES

So that its contained data can be extracted, a data product can appear with a formatting
standard (e.g., Flexible Image Transport System [FITS]), or a self-describing format (e.g.,
CDF, HDF, etc.) or a Data Definition Language (e.g., EAST). This syntactic information
may not be easy to understand and a formal definition of additional semantics may be
necessary, which leads to the definition of a product Data Entity Dictionary.

Figure -1- shows the structure of the data product (PRODUCT_X). It is made up of a
header (HEADER) and an image (DATA_1). The header contains a product identifier
(PRODUCT_ID), information about the station, which has acquired the data,
(ACQ_STATION), information about the acquisition time (ACQ_TIME), and information
necessary for the processing of the image, e.g., the centre coordinates [CENTRE_COORD
(LATITUDE and LONGITUDE)]. Its physical description, possibly expressed using a DDL,
may not be readily understandable to all readers because it includes a specification to the
bit level. It is also useful to have a quick overview of the product and to have additional
semantic information. Therefore, the definition of a product data entity dictionary
(PRODUCT_X DED) will bring this necessary information and perspective.

Within this data entity dictionary additional information can be given to more precisely
define:

– the definition of each data entity;

– the kinds of values used for the centre coordinates LATITUDE and LONGITUDE.

The values of LATITUDE are defined relative to the Equator and range from -90.000 to
+90.000, while the values of LONGITUDE are defined to be relative to Greenwich and
range from -180.00 to +180.00. The units used to express the values are to be in degrees.
All this information may be included in the data entity dictionary.

These pieces of semantic information correspond to the existing data entities of the
product.

Consequently, the PRODUCT_X DED will contain the semantic descriptions of the
following data entities:

– HEADER;

– PRODUCT_ID;

– ACQ_STATION;

– ACQ_TIME;

– CENTRE_COORD;

– LATITUDE;

– LONGITUDE;

– DATA_1.

DATA_1

PRODUCT_ID ACQ_STATION ACQ_TIME

PRODUCT_X

HEADER

CENTRE_COORD

LONGITUDELATITUDE

PRODUCT_X
DED

has as DED

Figure 1: Organisation of the Data Product Product_X

Figure -2- shows the structure of another data product (PRODUCT_Y). It is made up of
the product identifier (PRODUCT_ID), the centre coordinates (e.g., a latitude, a longitude)
and the acquired image (DATA_2). A data product dictionary (PRODUCT_Y DED) can
also be defined for PRODUCT_Y in the same way as for PRODUCT_X.

Consequently, the PRODUCT_Y DED will contain the semantic descriptions of the
following data entities:

– PRODUCT_ID;

– LATITUDE;

– LONGITUDE;

– DATA_2.

PRODUCT_Y
PRODUCT_Y

DED

LONGITUDELATITUDE DATA_2PRODUCT_ID

has as DED

Figure 2: Organisation of the Data Product Product_Y

Looking at the two previously described data products it seems convenient to define
PRODUCT_Y DED by re-using some data entity descriptions of PRODUCT_X DED.

The data entity descriptions which seem common to both data products are
PRODUCT_ID, LATITUDE and LONGITUDE.

Therefore the data product dictionary PRODUCT_X can be modified so that those data
entity descriptions become re-usable models. These models are abstract data descriptions
to which concrete descriptions, i.e., corresponding to data entities within the data product,
can refer. Then the DED associated with PRODUCT_Y can refer to the DED associated
with PRODUCT_X for the definition of some of its semantic descriptions using the models
of the PRODUCT_X DED.

Consequently, the PRODUCT_X DED will contain data entity descriptions corresponding
to abstract definitions (models) and named as follows:

– PRODUCT_ID_MODEL;

– LATITUDE_MODEL;

– LONGITUDE_MODEL.

The PRODUCT_X DED will still contain the semantic descriptions corresponding to the
following data entities, but with references to the newly defined models:

– HEADER;

– PRODUCT_ID, inheriting from the model PRODUCT_ID_MODEL;

– ACQ_STATION;

– ACQ_TIME;

– CENTRE_COORD;

– LATITUDE, inheriting from the model LATITUDE_MODEL;

– LONGITUDE, inheriting from the model LONGITUDE_MODEL;

– DATA_1.

The PRODUCT_Y DED will still contain the semantic descriptions corresponding to the
following data entities, but with references to the newly defined models:

– PRODUCT_ID, inheriting from the model PRODUCT_ID_MODEL;

– LATITUDE, inheriting from the model LATITUDE_MODEL;

– LONGITUDE, inheriting from the model LONGITUDE_MODEL;

– DATA_2.

Figure -3- presents the resulting organisation between both DEDs as they are used to
support PRODUCT_Y.

PRODUCT_Y�
DED�

PRODUCT_X�
DED�

Refers to�
LONGITUDE�

PRODUCT_Y�

LATITUDE� DATA_2�PRODUCT_ID�

has as DED�

Figure 3: Organisation of the DED Relative to Product_X and Product_Y

COMMUNITY DATA ENTITY DICTIONARIES

The project or the data designer may consider that a community dictionary is necessary
because there are several data products related to the same kind of data.

Looking at the two products given as examples, they may decide that the community data
entity dictionary should include the following entities which frequently appear:
PRODUCT_ID, ACQ_STATION, ACQ_TIME,LATITUDE and LONGITUDE.

This community DED will contain a normalized description of these entities which can
then be considered as models. Data entities being latitudes and longitudes and appearing

within other data products will then have the same associated semantic information
whenever they inherit from these normalized descriptions.

The other data entities only appearing in a data product such as DATA_1, DATA_2 and
CENTRE_COORD are local definitions.

The purpose of a community dictionary is to provide, across different data products, a
standard or normalized definition of data entities.

Table -1- shows an example of mapping of the community DED entries into data product
DED entries for the data products shown in figures -1- and -2-, according to the choices
made by the project or data designers.

Table 1: Comparison of Community DED and Product DED Descriptions

Concept Data Type Found in
Community

DED

Found in
PRODUCT_X

DED

Found in
PRODUCT_Y

DED

HEADER Composite no yes no

PRODUCT_ID Text yes yes yes

ACQ_STATION Enumeration yes yes no

ACQ_TIME Composite yes yes no

CENTRE_COORD Composite no yes no

LATITUDE Real yes yes yes

LONGITUDE Real yes yes yes

DATA 1 Composite (Array
of 16-bit integers)

no yes no

DATA 2 Composite (Array
of real numbers)

no no yes

Supposing that the project has defined its community dictionary, when it defines a new
data product or for example when it rewrites the dictionary related to PRODUCT_X (in
figure -1-), it can decide to define the HEADER entity on the basis of PRODUCT_ID,
ACQ_STATION and ACQ_TIME, which inherit from the corresponding data entities in the
community dictionary, i.e., which then have the same properties as the model data
entities. The project can also decide to define the CENTRE_COORD entity on the basis of
the LATITUDE and LONGITUDE entities, which inherit from the corresponding data
entities in the community dictionary. The DATA1 entity does not inherit from a specific
data entity described in the community DED, as it appears to be a kind of data only
appearing in the data product PRODUCT_X.

The same policy can be applied to PRODUCT_Y of figure -2-.

Therefore we can consider the links ‘uses some models of’, in figure -4-, among the three
data entity dictionaries. A ‘uses some models of’ link between PRODUCT_X DED and the
domain DED means that some data entities of PRODUCT_X inherit from corresponding
data entities contained in the domain DED.

PRODUCT_ID_MODEL
ACQ_STATION_MODEL
ACQ_TIME_MODEL
LATITUDE_MODEL
LONGITUDE_MODEL

PRODUCT_ID
HEADER
ACQ_STATION
ACQ_TIME
CENTRE_COORD
LATITUDE
LONGITUDE
DATA_1

PRODUCT_ID
LATITUDE
LONGITUDE
DATA_2

DED associated with Product_YDED associated with Product_X

Community or domain DED

Uses some models of
Uses some models of

Figure 4: ‘Uses some models of’ Links between Data Product Dictionaries

APPLICATION OF THE DEDSL

GENERAL

As demonstrated in the previous section, there are two major uses for dictionaries:

– to describe a data product semantically;

– to build up and define a community DED.

The Recommendation focuses on developing standard names and descriptions for the
concepts required for Data Entity Dictionaries, and formally defines the concepts of
name, definition, units, and a small set of other attributes so they may be used
consistently in the formation of data entity dictionaries. A method is also provided to
permit the set of attributes to be extended beyond the standard ones provided within this
Recommendation.

This formal definition enables the definition of generic tools to assist producers in
creating documented products, and to assist consumers in understanding the products they
receive.

PRODUCT DATA ENTITY DICTIONARIES

A product DED is a means for an organisation to present the semantics necessary for a
good understanding of a managed data product. A product DED is dependent of the data
product description. However, an enhanced understanding is only possible when the
semantics associated with the products are presented in a common, i.e., standardised way.

Therefore, the DEDSL Recommendation provides a foundation for the creation of a
product DED by providing a basic set of concepts for data entity descriptions. This

Recommendation also provides the formal methods to describe relationships among the
data entities of the product DEDs.

COMMUNITY DATA ENTITY DICTIONARIES

A community DED is also a means for an organisation to gain some degree of
control/standardisation over the data descriptions created by member data producers.
Unlike product data entity dictionaries, these community DED are not used in
conjunction with a specific product description technique. They are independent of the
specific implementation of products. Examples of uses of community DED include:

– the creation of a standard data entity dictionary by an organisation that mandates
the attributes defining each entity description in dictionaries used within that
organisation;

– the creation of a community DED by a particular community (e.g., planetary
science, astrophysics, etc.), to establish a degree of standardisation for the contents
of any data entity dictionary associated with a data product from that community.

The DEDSL Recommendation provides a foundation for the creation of community DED
and also provides the formal methods to describe relationships among data entities of
multiple data entity dictionaries.

REGISTERING DED

Whenever a project or data designer has defined a product DED, it makes sense to
register it as it may apply to multiple instances of the product and this makes it easier to
find and retrieve for dissemination or updating.

Whenever a project or data designer has defined a community DED, they can decide to
register it at different levels:

– in the framework of any organisation dealing with data of a particular domain or
project;

– internally within an agency;

– within the CCSDS community.

For example, whenever a member agency considers that one of its particular community
DED corresponds to the needs of other agencies, it may submit its DEDs to an
organisation conforming to the CCSDS (references [4] and [C5]) or ISO registration
procedures.

IMPLEMENTATIONS
There are currently two implementations of the DEDSL :

The PVL implementation - CCSDS 647.2-B-1: Data Entity Dictionary
Specification Language (DEDSL) - PVL Syntax (CCSD0012).

The XML implementation - CCSDS 647.3-B-1: Data Entity Dictionary
Specification Language (DEDSL) - XML/DTD Syntax (CCSD0013).

Both are implemented in the CNES Data Description Tool : OASIS (http://east.cnes.fr).
OASIS allows the production of Data Entities Dictionaries through a user-friendly
graphical interface. DEDs in XML format are used by several project at CNES, to
produce interface documentation. Figure -5- shows a snapshot of the OASIS screen.

Figure 5: Screen of the CNES OASIS Tool

SUMMARY SESSION 4

